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a b s t r a c t 

In this paper, we present a mathematical programming model based on a time-space network represen- 

tation for solving real-time transportation problems in forestry. We cover a wide range of unforeseen 

events that may disrupt the planned transportation operations (e.g., delays, changes in the demand and 

changes in the topology of the transportation network). Although each of these events has different im- 

pacts on the initial transportation plan, one key characteristic of the proposed model is that it remains 

valid for dealing with all the unforeseen events, regardless of their nature. Indeed, the impacts of such 

events are reflected in a time-space network and in the input parameters rather than in the model it- 

self. The empirical evaluation of the proposed approach is based on data provided by Canadian forestry 

companies and tested under generated disruption scenarios. The test sets have been successfully solved 

to optimality in short computational times and demonstrate the potential improvement of transportation 

operations incurred by this approach. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Optimization models and operations research (OR) methods

ave been used in the forest industry since the 1960s ( Weintraub

nd Romero, 2006 ). Recent reviews on how these models and

ethods are used to solve planning problems in forestry can be

ound in Rönnqvist et al. (2015) and Borges et al. (2014) . These

lanning problems cover a wide range of activities such as sylvi-

ulture, harvesting, road building, production and transportation,

hich present to this day several challenges to OR practitioners

 Martell et al., 1998; Rönnqvist et al., 2015 ), as the forest industry

ttempts to improve its competitiveness and reduce its environ-

ental impact. In particular, improving transportation planning in

orestry has been the object of recent research of highly practical

elevance, since transportation costs are estimated at more than

ne-third of wood procurement costs ( Rönnqvist et al., 2015 ). Min-

mizing transportation costs therefore represents a key element to

mprove the competitiveness of forest companies. 

Recently, a number of OR models and methods have been de-

eloped to solve the log-truck scheduling problem (LTSP) ( El Ha-

hemi et al., 2013; Gronalt and Hirsch, 2007; Palmgren et al., 2004;

ix et al., 2014; Weintraub et al., 1996 ), which consists in deriving
∗ Corresponding author. 

E-mail address: amine.amrouss@umontreal.ca (A. Amrouss). 
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305-0548/© 2017 Elsevier Ltd. All rights reserved. 
chedules for trucks to transport different wood products between

orest sites and wood mills. In addition, several decision support

ystems, such as the ASICAM project in Chile ( Weintraub et al.,

996 ) and the EPO project in Finland ( Linnainmaa et al., 1995 ),

ere developed to ease transportation planning. A review of trans-

ortation planning systems in the forest industry and the contri-

ution of OR in their development can be found in Audy et al.

2012) . Note that few decision support systems are available to for-

st companies (compared to other industrial sectors ( Carlsson and

önnqvist, 2005 )), as many forest companies still rely on experi-

nced dispatchers to manually derive their transportation plans. 

Whether the transportation plans are obtained through an op-

imization method or manually, their implementation in practice

s vulnerable to unforeseen events. For example, in Canada, spring

hawing soils and summer rains degrade the forest roads condi-

ion and prevent the trucks from accomplishing their trips within

he planned time. The late arrival of these trucks may also create

ueues for loading and unloading operations. In this case, the dis-

uption consequences may stream through the whole supply chain

nd many trips could become infeasible. There is then a need to

e-optimize the transportation plan as early as possible to mini-

ize the impact of such disruptions. Real-time rescheduling of log-

rucks has not been subject to much attention in the literature, in

pite of the growing body of literature on similar problems in other

ndustrial sectors, with the advent of intelligent transportation sys-

ems ( Crainic et al., 2009 ). To the best of our knowledge, CADIS

http://dx.doi.org/10.1016/j.cor.2017.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2017.02.008&domain=pdf
mailto:amine.amrouss@umontreal.ca
http://dx.doi.org/10.1016/j.cor.2017.02.008
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(for Computer Aided Dispatch) is the only documented decision

support system for real-time dispatching in forestry ( Rönnqvist

and Ryan, 1995 ). The authors reported few details about this sys-

tem because of non-disclosure agreements with the New Zealand

company that used it. The system produced encouraging results

( Rönnqvist, 2012 ), although it was used only for a short period, as

the company ceased its activities because of financial issues. Other

commercial decision support systems ( Audy et al., 2012 ) may in-

clude real-time dispatching modules, but they are generally man-

ually managed. The recent work ( Rönnqvist et al., 2015 ) defines

real-time transportation management as one of 33 open problems

in the forest industry for OR practitioners. 

Several sources of uncertainty exist in the forest industry

( Rönnqvist et al., 2015 ). The wood markets include uncertainties

about the prices and demand volumes. The forest areas involve

many uncertainties, such as the growth and quality of the trees,

the volume estimates (global and per species), diseases and fire

risks. The wood production includes inaccuracies about the har-

vesting and transportation plans. Other uncertainties include tech-

nology developments and regulation changes. These inaccuracies

are generally handled through including extra travel times for

transportation estimates, extra inventories for demand levels, extra

dollars for cost estimates, etc. Some stochastic models have been

lately introduced to cover some types of uncertainties in the for-

est industry. In Alonso-Ayuso et al. (2011) , the authors consider a

tactical harvesting and road construction problem with market un-

certainty. The stochastic model that they developed tries to find

the best solution that is feasible under all the generated scenarios

related to timber price variations. In addition to the large num-

ber of scenarios that could be generated, the nonanticipativity con-

straints make the problem solution harder. These constraints state

that if two different scenarios are identical up to a certain time

interval, the values of the decision variables values also be identi-

cal up to that interval. The authors use a branching scheme where

these constraints are implicitly satisfied. In Carlsson et al. (2014) ,

the authors present a Scandinavian case study where there are un-

certainties about the demand. The original approach was to keep

a safety stock to face the demand fluctuations. The authors pro-

pose, instead, a robust optimization approach to eliminate these

stocks. The approach decomposes the problem into two separate

problems. In the first problem, they find a feasible solution. The

second gives the worst-case scenario given this solution. This is

used as a valid inequality in the first model. The process is re-

peated until the first problem produces a solution satisfying the

worst-case scenario. 

Simulation can be used to evaluate the solutions found by solv-

ing the mathematical models. It allows to identify potential issues

associated with the implementation of the solutions. The optimiza-

tion models can be modified and solved again after the simulation.

This technique was recently used to assess the performance of a

transportation plan considering uncertainty in trucks arrival time

at a mill ( Marques et al., 2014 ). Similarly, Figueira et al. (2013) uses

a discrete-event simulation model to evaluate the implementation

of production plans of an integrated pulp and paper mill. The sim-

ulator is also used to refine the parameters of the analytical model

in order to produce more robust plans. 

In stochastic programming, simulation can be used to generate

a set of scenarios that are used as input to the optimization model.

The method assumes that the uncertainty has a probabilistic de-

scription, which can be hard to define. Depending on the com-

plexity of this description, the model may become hard to solve

within a reasonable computational time. In robust optimization,

the uncertainty is only known to belong to some uncertainty set

and there is no requirement to have probability distributions. The

goal is to find the optimal solution that is feasible in the worst-

case scenario. To avoid conservative and costly solutions, care must
e taken in the construction of the uncertainty set, which is chal-

enging for large scale forest planning problems. 

The most frequent source of uncertainty related to transporta-

ion planning problems in other industrial sectors is the arrival

f new requests (e.g., new customers or change in the demand)

 Novoa and Storer, 20 09; Secomandi and Margot, 20 09 ). In forest

ransportation planning problems, one must deal with unforeseen

vents of a different nature such as changes in the topology of the

ransportation network (e.g., road closure). In this paper, we pro-

ose a mathematical programming model that remains valid for

very unforeseen event that may occur during forest transportation

perations, regardless of its nature. The model is based on a time-

pace network representation of the forest supply chain where the

mpacts of the unforeseen events are represented. 

The remainder of this paper is organized as follows.

ection 2 describes the problem, starting with a generic de-

cription of the LTSP. Section 3 presents the proposed approach to

e-optimize the transportation plan in real-time in response to an

nforeseen event. The description of the test sets and the results

f our approach are presented in Section 4 . Section 5 concludes

his work. 

. Problem description 

We begin this section with a generic description of the LTSP,

hose solution produces a transportation plan that consists of a

equence of empty and loaded trips in addition to loading and un-

oading operations. Note that our approach remains valid whether

uch a plan is derived manually or by using optimization methods,

ut the LTSP provides a conceptual framework for the subsequent

evelopment of our model for real-time rescheduling of log-trucks.

We assume a homogeneous fleet of trucks. Each truck is associ-

ted with a base, usually a wood mill, where it must begin and end

ts shift. The planner must assign a route to each truck. A route is

omposed of a set of trips in addition to waiting, loading and un-

oading operations. Table 1 presents an example of a weekly truck

oute. 

We define as R, V, M, F , and P the sets of routes, trucks, mills,

orest sites, and wood products, respectively. R v is the subset of

outes linked to truck v ∈ V . Each route r ∈ R has a cost c r . This

ost includes productive (loaded trips, loading and unloading) and

nproductive activities (empty trips and waiting). The basic LTSP

ims at minimizing the total cost while satisfying the demand D mp 

f product p ∈ P at each mill m ∈ M given a certain amount of

vailable wood products S fp at each forest site f ∈ F . The problem

an be formulated as follows ( Rönnqvist, 2003 ): 

Min 

∑ 

r∈ R 
c r y r (1)

 

r∈ R 
b mpr y r = D mp , ∀ m ∈ M, p ∈ P (2)

 

r∈ R 
a f pr y r ≤ S f p , ∀ f ∈ F , p ∈ P (3)

∑ 

∈ R v 
y r ≤ 1 , ∀ v ∈ V (4)

 r ∈ { 0 , . . . , | V | } , ∀ r ∈ R (5)

The variables y r indicate the number of trucks assigned to route

 . The parameters a fpr ( b mpr ) represent the total amount of product

 picked up at forest site f (delivered at mill m ) by each truck as-

igned to route r . The objective function (1) minimizes the total

ost. Constraints (2) and (3) ensure demand satisfaction while not
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Table 1 

Example of a route. 

Shift index Cycle start 

day 

Cycle start 

time 

Empty 

origin 

Empty 

driving 

duration 

Empty 

destination 

Loading 

duration 

Product Loaded 

driving 

duration 

Loaded 

destination 

Waiting 

duration 

Unloading 

duration 

Cycle end 

time 

1 Monday 0 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 5 :20 

1 Monday 5 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 10 :20 

1 Monday 10 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 15 :20 

2 Tuesday 0 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 5 :20 

2 Tuesday 5 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 10 :20 

2 Tuesday 10 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 15 :20 

3 Wednesday 0 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 5 :20 

3 Wednesday 5 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 10 :20 

3 Wednesday 10 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 15 :20 

4 Thursday 0 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 5 :20 

4 Thursday 5 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 10 :20 

4 Thursday 10 :20 Sk 2 :00 Ki 0 :20 A 2 :20 Sk 0 :00 0 :20 15 :20 

5 Friday 1 :00 Sk 2 :20 Pe 0 :20 B 2 :20 Ra 0 :00 0 :20 6 :20 

5 Friday 6 :20 Ra 1 :40 Lu 0 :20 C 2 :00 Ra 0 :00 0 :20 10 :40 

5 Friday 10 :40 Ra 1 :40 Lu 0 :20 D 2 :40 Ca 0 :00 0 :20 15 :40 

5 Friday 15 :40 Ca 0 :40 Sk 0 :00 0 :00 0 :00 0 :00 16 :20 
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xceeding the supply. Constraint s (4) ensure that each truck is as-

igned to at most one route. However, Constraint s (5) allow the

ssignment of a route to several trucks. 

Set R can be generated in different ways. In a manual process,

n experienced dispatcher typically assigns trips to the destina-

ions that the driver is used to visit. Trips between a forest site

nd a mill are repeated as long as they remain feasible. In an opti-

ization approach, the set of feasible routes can be generated iter-

tively, in a branch-and-price procedure (branch-and-bound com-

ined with column generation) that solves model (1) - (5) . In this

ase, each generated route, at each node of the branch-and-bound

ree, is a solution of the respective pricing sub-problem. This sub-

roblem consists in finding the shortest path in a time-space net-

ork, where the length of a path corresponds to its reduced cost.

f the reduced cost of the shortest path is negative, the variable

ssociated to the corresponding route is added to model (1) –(5) . A

ompletely different approach is to use a formulation where the

outes (and thus set R ) are implicitly defined through the con-

traints, as in the flow-based model described in El Hachemi et al.

2015) . 

The transportation cost includes a fixed cost for using a truck

nd a variable cost proportional to the distance, which is mea-

ured in travel time. This distance depends on whether the truck

s empty or loaded, since the truck drives faster when it is empty.

he trucks have to travel empty from the mills to the forest sites.

hus, a truck that operates only trips between the same mill and

he same forest site loses half of its transportation capacity. In-

tead, once at a mill, one must try to allocate the wood products

rom the closest forest sites to the mills in the opposite direction.

his is known in the literature as backhauling and we refer the in-

erested reader to Carlsson and Rönnqvist (2007) for more details

bout decision support systems using backhauling in the forest

ndustry. 

Loading and unloading operations are performed by loaders at

orest sites and mills. These loaders are usually operated only for a

pecific period of the day. Moreover, the number of loaders avail-

ble at a mill or a forest site may vary during the day. To avoid

reating queues at the loaders and thus reduce the cost of unpro-

uctive activities, another objective that must be met by the dis-

atcher is the synchronization of the trucks with the loaders given

ccurate information about the available loaders. These constraints

ppear in the recent works on the LTSP ( El Hachemi et al., 2013;

ix et al., 2014 ) and are considered in our work. 

In the context of real-time rescheduling of log-trucks, we as-

ume that truck drivers receive one trip at a time, the dispatcher

aiting for each truck driver to finish its current trip before re-

t  
ealing its next destination. This mode of transportation planning

anagement gives more flexibility to re-optimize the routes, since

t avoids drivers resistance to change. 

While re-optimizing the transportation plans following the oc-

urrence of an unforeseen event, the dispatcher must avoid divert-

ng a truck from its destination unless the unforeseen event pre-

ents the completion of the current trip. This improves the con-

istency of the proposed schedules and facilitates their real-life

mplementation. Moreover, in a real-time context, the amount of

ime available to the dispatcher to derive alternative transporta-

ions plans is limited. 

The nature of the unforeseen events that arise in the forest in-

ustry is distinct from what can be found in the literature on sim-

lar problems found in other industrial sectors. In Amrouss et al.

2016) , the authors present a list of the most frequent unforeseen

vents. The list includes unforeseen events that are likely to appear

t the forest sites, those involving trucks and road networks, and

he events that occur at the mills. To develop effective recourse

trategies when facing such events, one must focus on the impacts

hey have on the transportation network rather than on the events

hemselves. The next section describes the proposed approach to

mplement these recourse strategies. 

. Proposed approach 

Our approach to real-time rescheduling log-trucks is built on a

ime-space network representation, which is used in the definition

f our mathematical programming model. The time-space network

epresents the evolution of the forest supply chain over time. This

epresentation varies depending on the nature of the unforeseen

vents that are revealed over time. The space and time dimen-

ions of the network allow to track the trucks in real-time and to

apture the impacts of the unforeseen events on the transporta-

ion network (e.g., by removing the arcs that become inaccessible).

he distances between two locations in the transportation network

re expressed as a time measure. This helps to capture the impact

f some unforeseen events. In the case of a road degradation or

 traffic jam, for example, the trip duration may become longer,

hile the geographical distance remains the same. The mathemat-

cal programming model takes this time-space network as an input

nd is solved using a commercial solver. 

.1. Time-space network 

When an unforeseen event is revealed, one must collect real-

ime information about the state of the transportation network
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Fig. 1. Time-space network. 
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elements. We refer to the state of a truck, for example, as the in-

formation about its position, its destination and the product it is

transporting if it is loaded. Moreover, if the truck is directly im-

pacted by the unforeseen event as in the case of a truck break-

down, we assume that we have additional information about the

estimated characteristics of the corresponding event, such as an es-

timate of the truck repair duration. The collection and validation of

these estimates is beyond the scope of this work, but the current

development of onboard computers, geo-location and communica-

tion technologies, in addition to the development of big data algo-

rithms, make the collection of good quality estimates of the dis-

ruptions characteristics more affordable and easier. In this paper,

we do not simulate how the plan will evolve after the disruption.

In practice, one can use simulation to decide whether or not to

re-optimize the transportation plan. 

The state of the transportation network can be seen as an in-

stant picture of this network that we represent as a time-space

network. The space dimension of the network contains the set of

wood mills and forest sites in addition to their linking roads. For

the time dimension of the network, we divide the planning hori-

zon into a set of intervals. The necessary time for loading and un-

loading operations is approximately equal and the driven distances

are quite large in the context we consider in this paper. There-

fore, we use the loading duration as a time-step for discretizing

the planning horizon. Time-space networks are used for generat-

ing routes to solve daily, weekly, and annual LTSPs, but they are

generally not formally described in the LTSP literature ( Rey et al.,

2009; Rix et al., 2014 ). The network that we use in this paper is

adapted from the one proposed in El Hachemi et al. (2015) . The

main differences are the use of a source vertex per truck, the du-

plication of loaded arcs by wood product, and the use of different

arc capacities. The novelty is also that we modify the network af-

ter each disruption. Fig. 1 presents this time-space network, which

contains four types of vertices: 

• A source vertex for each truck representing its current location

(or its base if it has not yet started its shift) when the unfore-

seen event is revealed. These individual truck vertices are dif-

ferent from what can be found in a conventional time-space
network. We need to introduce them to track the truck posi-

tions in real-time. Note also that the trucks that finish their

shift before the occurrence of the disruption are not repre-

sented in the network. 
• A sink vertex for each truck . It corresponds to its base and rep-

resents the shift end for the truck. 
• Forest site vertices . Each vertex is replicated for each time in-

terval of the discretized planning horizon. This allows to cap-

ture real-time information about the forest sites. This includes

the current supply of each product and the number of loaders

available at the correspondent interval. These vertices are du-

plicated to represent whether the truck is full or empty. 
• Mill vertices . They are similarly replicated. The vertex state con-

tains information about the current demand for each prod-

uct and the number of loaders available at the corresponding

interval. 

The replication of the vertices is done horizontally in Fig. 1 .

ach pair of lines represents either a mill or a forest site evolv-

ng over time. For reasons of clarity, only a subset of the arcs is

epresented in Fig. 1 and their length does not represent the real

istances. The arcs kept for the first truck give an example of a

mall sequence of trips. There are seven types of capacitated arcs

n the time-space network: 

• Start arcs connecting source vertices to empty forest site ver-

tices, if the corresponding truck is empty, and to full mill ver-

tices, otherwise. Their capacity is one truck. 
• End arcs connecting empty mill vertices that correspond to a

truck base to this truck sink vertex. Their capacity is one truck.
• Loaded driven arcs connecting a full forest site vertex to a full

mill vertex demanding at least one of the available products at

this forest site. They are duplicated for each available product.

Their capacity is equal to the number of available trucks. 
• Empty driven arcs connecting an empty mill vertex to an empty

forest site vertex supplying at least one requested product.

Their capacity is equal to the number of available trucks. 
• Waiting arcs connecting two successive mill vertices. Their ca-

pacity is equal to the number of available trucks. Note that, as

the number of mills is usually smaller than the number of for-
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est sites and to reduce the symmetry, we prefer that the trucks

wait at mills instead of at forest sites. We mean by symmetry

that if a truck waits either at a forest site or at a mill, this will

lead to a solution that has the same cost. 
• Loading arcs connecting two successive empty and full forest

site vertices. Their capacity is equal to the number of available

loaders at the forest site during the corresponding time inter-

val. Note that the number of available loaders is smaller than

the number of trucks (there is generally one loader per site). 
• Unloading arcs connecting two successive full and empty mill

vertices. Their capacity is equal to the number of available load-

ers at the mill during the corresponding time interval. 

It should be noted that the length of the arcs represents the

uration of the corresponding operation. Therefore, these arcs ex-

st only between vertices at intervals separated by at least this

uration. Moreover, the vertices and arcs constituting this time-

pace network vary over time and depend on the nature of the re-

ealed unforeseen events. We describe how these transformations

re done in the following subsection. 

.2. Dealing with disruptions 

At the occurrence of an unforeseen event, we first collect the

ecessary information about the trips that were executed before

he disruption in order to update the remaining demand and sup-

ly and the number of trucks still in operation. We also collect the

elevant information about the trucks, their positions and if they

re loaded or empty. Having this information in addition to the

stimates of the unforeseen event impacts, a new time-space net-

ork is produced. All the vertices and arcs that start before the

ccurrence of the event are removed from the initial time-space

etwork. One exception is the truck start vertices. Outgoing arcs

rom these start vertices are updated according to the nature of

he unforeseen event and to the corresponding truck positions. 

The recourse strategies when an unforeseen event is revealed

epend on its impact on the transportation network rather than on

he event itself. Different unforeseen events can have the same im-

act on the transportation network. For example, in the case of the

resence of a single loader at a forest site or at a mill, the break-

own of this loader can be seen as the corresponding site closure,

ssuming that the loaders are not allowed to move between dif-

erent sites and that the trucks do not include onboard loaders.

he following describes the disruptions categories based on their

mpact on the network, in addition to the corresponding recourse

trategies. 

losures 

This category contains the closures of forest sites, wood mills

nd roads. Also, there is generally one single forest road to access

 forest site in contrast with urban context where the same point

ay be reached by different paths. Therefore, the closure of such

oad can also be considered as a forest site closure. A mill closure

eans that no product can be delivered to this mill during the clo-

ure. This can be caused, for example, by a decrease in the storage

apacity or by the breakdown of the loader associated with this

ill. 

In the event of such disruptions at a mill or at a forest site, we

emove the loading or unloading arcs at the corresponding vertices

n addition to outgoing driven arcs for all time intervals that lie

ithin the estimated duration of the disruption. We keep the wait-

ng arcs at the mills. For trucks planned to arrive at the closed ver-

ices before the operations start back, their start vertices are con-

ected to the other mills or forest sites depending on whether they

re loaded or not. The remaining truck start vertices are connected

o their current destination at the time the disruption is revealed.
he rest of the network is unchanged. If the disruption occurs on

 road linking a mill to a forest site, we remove the corresponding

rcs in the network for all the time intervals that lie within the

losure duration. 

elays 

Delays can be caused by a variety of unforeseen events. This in-

ludes bad weather conditions (poor visibility, thawing soils, heavy

ains), degradation of forest roads, traffic jams, opening of hunting

r fishing season and so on. Delays can be observed at a single

ruck level. This is the case, for example, when the truck is under-

oing some mechanical issues and thus slowing down. In contrast,

hen a forest road is damaged, for instance, all the trucks taking

his road will be impacted. 

When a truck is delayed, we link its start vertex to its current

estination vertex but at an interval that takes into account both

he remaining distance and the estimation of the delay. For delays

bserved between two vertices, we move the arcs to take into ac-

ount the delay estimation. We do so for all the arcs that lie within

he estimation of the duration necessary to return to normal oper-

tions. 

A truck breakdown can also be seen as a delayed truck. We as-

ume that we have an estimate of the necessary time to repair this

ruck. If the repair time does not exceed the planning horizon, the

rrival time of the truck to its next destination is delayed by the

epair duration. Otherwise, we just remove the truck from the net-

ork. 

emand and supply variations 

Mill breakdowns may lead to a decrease in its storage capacity.

he demand of some products must therefore be adjusted down-

ards. Also, we may have an increase in the demand for some

roducts. If the mill is not already connected to forest sites where

he product is available, we add empty and loaded driven arcs be-

ween the mill and these forest sites. We also adjust the demand

arameter in the input data. Similarly, if, during the day, we have

ore accurate data about the supply, its parameter is updated in

he input data. 

oader breakdowns 

We assume to have an estimate of the necessary repair time

nd we update the number of available loaders during this period.

Fig. 2 presents an example of a time-space network modifi-

ation. This is a simple case involving one mill, one forest site,

nd one truck. We assume that the truck has a breakdown at the

th time interval while it was heading to the mill. The truck was

lanned to arrive at the 9th time interval and we assume that

hree time intervals are necessary to fix it. Therefore, it is now

lanned to arrive at the 12th time interval at the mill. The source

ertex is moved to represent the current truck position. The only

rc that the truck is allowed to take from this vertex is linked to

he mill at the 12th time interval. After that, it can either wait or

nload. Note that there is no need to use waiting arcs in this case

ince there is only one truck. We keep them only for explanation

urposes because these arcs are used when we have more than

ne truck. The remaining arcs are feasible for the truck and it is

p to the mathematical model to choose the ones to include in

he optimal solution. 

Note that the number of forest vertices is smaller than mill ver-

ices. This is because we take into account the travel time neces-

ary to go back and forth between the mill and forest site within

he mill opening hours. Other constraints may include limits on

aximal driving hours, which can be incorporated in the network

y removing end arcs leaving mill vertices at time intervals that

xceed these limits. A disruption might happen in the middle of a
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Fig. 2. Example of network modification. 
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time interval and the truck will not arrive exactly at one of the ver-

tices of the network. In this case, we link its source vertex to the

closest following vertex. In practice, the truck might have to wait

anyway if other trucks are being unloaded. Otherwise, this can be

considered as an additional time margin for its following trips. An-

other solution could be to refine the time-space network by de-

creasing the time step. This would yield, however, a larger network

and therefore higher computational time. To solve a weekly LTSP,

which is decomposed into daily LTSPs, ( El Hachemi et al., 2015 )

studied the impact of using a 10 min discretization step to refine

the solution found with a 20 min step. The solution was improved

only for 2 out of 21 daily LTSPs by about 2%. For a real-time ap-

plication, solutions must be found quickly. Therefore, we do not

consider further refinement of the solution. 

When an arc is modified in the network, its cost is also updated

according the nature of the disruption. Once the new time-space

network is obtained, it is combined with the new cost matrix, the
 p  
emaining demand and supply, and the number of available trucks

nd loaders. These constitute the input parameters of the mathe-

atical programming model. 

.3. Mathematical programming model 

A two-phase approach for solving a weekly LTSP is introduced

n El Hachemi et al. (2015) . The authors solve, in the first phase, a

actical MIP to assign forest supply to mills. In the second phase,

hey solve seven daily LTSPs where the demand is expressed as

 set of trips between forest sites and mills obtained from the

ssignment phase. As the resulting transportation plans are vul-

erable to unforeseen events, the following mathematical model

resents the results of adapting this work to a real-time context.

or example, as the demand and supply may vary over time, we

eintroduce supply constraints and disaggregate the demand by

roducts in the daily LTSP. The demand and supply are expressed
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n full truckloads since the fleet is homogeneous and the supply is

uite large in the case studies we consider. 

Some unforeseen events can have severe impacts on the sup-

ly chain and prevent the demand satisfaction. A penalty cost for

ach unmet demand is incurred. The penalty cost is chosen large

nough to ensure demand satisfaction whenever it is possible. 

As the input data and the time-space network evolve over time,

epending on the nature of the revealed unforeseen events, one

ust index all the model parameters and variables by the event

ategory and by their occurrence time. However, for the sake of

larity and ease of reading, we omit these indices. Hereafter, we

ist the parameters and the variables of the model, and then intro-

uce the model itself. 

arameters 

F : set of forest sites, 

M : set of mills, 

V : set of trucks, 

P : set of wood products, 

I : set of time intervals, 

N : set of vertices, 

A : set of arcs, 

A + (n ) : set of outgoing arcs from vertex n, 

A −(n ) : set of incoming arcs into vertex n, 

A loaded 
f mp 

: set of loaded driven arcs from forest site f to 

mill m transporting wood product p, 

A WLE : set of waiting, loaded and empty driven arcs, 

Start v : start vertex for truck v , 
End v : end vertex for truck v , 
A U 

mi 
: unloading arc at mill m at time interval i, 

A L 
f i 

: loading arc at forest site f at time interval i, 

c a : cost associated with arc a, 

c : penalty cost of unmet demand, 

d mp : demand of product p at mill m in full 

truckloads, 

s f p : supply of product p at forest site f in full 

truckloads, 

l mi : number of available loaders at mill m at time 

interval i, 

l f i : number of available loaders at forest site f at 

time interval i . 

ariables 

x a : number of trucks that follow arc a, 

δmp : unmet demand of product p at mill m . 

odel 

in 

∑ 

a ∈ A 
c a x a + 

∑ 

m ∈ M 

∑ 

p∈ P 
cδmp (6) 

∑ 

 ∈ A + (Start v ) 

x a ≤ 1 , ∀ v ∈ V (7) 

∑ 

 ∈ A + (Start v ) 

x a = 

∑ 

a ∈ A −(End v ) 

x a , ∀ v ∈ V (8) 

∑ 

 ∈ A + (n ) 

x a = 

∑ 

a ∈ A −(n ) 

x a , ∀ n ∈ N\ ∪ v ∈ V { (Start v , End v ) } (9) 

 

f∈ F 

∑ 

a ∈ A loaded 
f mp 

x a + δmp = d mp , ∀ m ∈ M, ∀ p ∈ P (10) 

∑ 

 ∈ M 

∑ 

a ∈ A loaded 
f mp 

x a ≤ s f p , ∀ f ∈ F , ∀ p ∈ P (11) 

 a ∈ { 0 , 1 } , ∀ a ∈ A 

+ (Start v ) ∪ A 

−(End v ) (12) 

s

 a ∈ { 0 , . . . , l mi } , ∀ m ∈ M, ∀ i ∈ I, ∀ a ∈ A 

U 
mi (13) 

 a ∈ 

{
0 , . . . , l f i 

}
, ∀ f ∈ F , ∀ i ∈ I, ∀ a ∈ A 

L 
f i (14) 

 a ∈ { 0 , . . . , | V | } , ∀ a ∈ A 

W LE (15) 

mp ∈ { 0 , . . . , d mp } , ∀ m ∈ M, ∀ p ∈ P (16) 

The objective function (6) minimizes the total cost, including

aiting, loading and unloading, and loaded and empty driven trips.

he total cost includes also the penalty costs of the unmet demand.

onstraint s (7) ensure that each truck uses, at most, one start arc.

onstraint s (8) ensure that every used truck goes back to its base.

onstraint s (9) are flow conservation constraints for each mill and

orest site vertex. This means that the number of trucks enter-

ng a vertex must be equal to the number of trucks exiting from

his vertex. Constraints (10) and (11) guarantee the satisfaction of

he remaining demand while not exceeding the supply. Constraints

12) ensure the unicity of the capacity of start and end arcs. Con-

traints (13) and (14) ensure that each loader only serves one truck

t a time. Constraint s (15) limit the capacity of waiting, loaded and

mpty driven arcs to the number of available trucks. Finally, Con-

traint s (16) ensure the non-negativity of the unmet demand and

imits its value to the actual demand. 

We assume that we have a weekly transportation plan as the

tarting point. The transportation operations follow this schedule

ntil an unforeseen event is revealed. The time-space network and

he input parameters are updated according to the nature of the

nforeseen event, then we solve the model for the current day.

any vertices and arcs are removed from the time-space network

o take into account operational constraints. Indeed, the opening

ours of wood mills limit the number of feasible vertices. In prac-

ice, some forest sites are assigned to only a subset of mills, which

educes the number of feasible arcs. Moreover, the size of the

ime-space network becomes smaller as the transportation opera-

ions progress. The mathematical model can then be solved within

 reasonable computational time using a state-of-the-art commer-

ial solver. These solvers include some routines that are able to fur-

her reduce the size of the model during the pre-processing phase.

he transportation plan obtained for the current day is used un-

il another unforeseen event is revealed, and the optimization ap-

roach starts over again. In the following day, we start with the

nitial transportation plan for that day and solve the new daily

roblem if an unforeseen event occurs. We use this approach in a

ontrolled testing environment, where we limit the impact of the

isruptions to the current day. In practice, if an event lasts beyond

he end of the current day, the initial transportation plan for the

ollowing day is no more relevant. In this case, optimization meth-

ds for solving daily and weekly LTSPs ( El Hachemi et al., 2015;

ey et al., 2009; Rix et al., 2014 ) can be used offline to produce a

ew transportation plan for the following days, since more compu-

ational time is available. 

. Computational results 

FPInnovations, a non-profit forest research centre dedicated to

he improvement of the Canadian forest industry through innova-

ion, provided us with six case studies from Canadian forest com-

anies. All these case studies represent weekly planning problems.

oreover, we developed a disruptions generator that produces sev-

ral “weeks” of unforeseen events. A week of unforeseen events is

 set of disruptions scattered over one week. The goal is to assess

he performance of the proposed approach on different forest sup-

ly chain configurations under different disruption scenarios. The

ain performance indicators considered in this paper are demand

atisfaction, transportation cost and computational time. 



102 A. Amrouss et al. / Computers and Operations Research 83 (2017) 95–105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S  

2

4

 

a  

p  

l  

a  

t  

(  

i  

t  

t  

i  

t  

(  

a  

i  

a  

i  

d  

r  

t  

o  

a  

w  

6  

o  

p  

o  

a  

d

 

t  

t  

t  

e  

s  

p  

s  

d  

u  

s  

i  

a  

w

4

 

w  

m  

p  

a  

c  

t  

c  

p  

T  

h  

t  

b  

t  

h  
4.1. Unforeseen events 

Unforeseen events have different impacts on the transporta-

tion network. For testing purposes, these events and their impacts

are randomly generated. We developed a discrete-event simulation

procedure that produces a succession of events that happen at dif-

ferent discrete times. Note that different events are allowed to hap-

pen at the same time. The aim of this simulation is to generate un-

foreseen events that may happen during a full week. Therefore, af-

ter running the simulation procedure several times, we obtain dif-

ferent types of weeks with regard to the severity of the impacts. A

hard week, for example, may be considered as a spring week with

thawing soils, traffic jams and increasing risk of accidents because

of the opening of the fishing season. 

Some assumptions regarding the probability distributions of the

disruptions and their impacts were made. To represent the impacts

of these events, one needs to have an estimate of the expected

time of the return to normal operations. It is common for the im-

pacts to last for a shorter time and only a smaller amount of the

impacts lasts for a longer time. We use then an exponential dis-

tribution to generate the disruptions duration. Note that the im-

pacts of some unforeseen events are not measured in time units

such as changes in the demand but the same observation could

be applied to the demand variation volumes. As for the disrup-

tions occurrence time, we assume that they can occur at any time

in the week. Therefore, we use the uniform distribution to gener-

ate their occurrence time. We make also some assumptions about

the maximum number of events that can happen simultaneously.

This is done for each single unforeseen event category presented

in Section 3.2 and also for the total number of all the event cat-

egories. During the events generation, if an unforeseen event is

generated and the maximum number of simultaneous disruptions

is attained, this event is rejected. Consequently, we need to keep

track of the start and the end of the unforeseen events and to

maintain a list of the current events. To generate the sequence

of disruptions, we represent each disruption category by a special

data type in our program that memorizes the occurrence time and

duration of the disruption. For each disruption, we consider two

types of simulation events : Start and End . The role of these events

is to update the state of the simulation given that a disruption

starts or ends. This includes generating the occurrence time and

duration of the disruption, in addition to scheduling future events

as follows ( Events 1 and 2 ): 

Event 1 Start . 

if the maximum number of simultaneous events is not attained

then 

Generate the current disruption random duration d

Schedule the end of the event in d time units 

else 

Reject the event 

end if 

Generate a random occurrence time t

Schedule the future disruption at time t

Update the number of current events and the statistics. 

Event 2 End . 

Update the number of current events and the statistics. 

To start the simulation, we schedule a dummy first Start event

at the beginning of the planning horizon. We also schedule an end-

of-simulation event at the planning horizon end to stop the sim-

ulation and extract the statistics. This simulation was done using
SJ, a framework for Stochastic Simulation in Java ( L’Ecuyer et al.,

002 ) . 

.2. Case studies 

The collaboration with FPInnovations allowed us to obtain re-

listic data about the forest supply chain and to validate the pro-

osed methods. We were provided with six weekly planning prob-

ems. We assume that these problems are initially solved using

n optimization method rather than manually by a dispatcher. For

esting purposes, we use the method described in El Hachemi et al.

2015) to derive a weekly transportation plan. In these case stud-

es, the number of initially available trucks is provided. However,

he optimization method may pick only a subset of these trucks to

ransport the wood products. Table 2 describes the six case stud-

es that we denote C1 through C6. For each case study, we provide

he number of wood mills (| M |), forest sites (| F |), wood products

| P |), the total demand ( D ) in full truckloads, the number of initially

vailable trucks (| V |) and the number of trucks used in the result-

ng transportation plan (| V u |). The approximate driving cost ( c D ) is

round 100$ per hour in average and the average waiting cost ( c W )

s about 75$ per hour. The difference between loaded and empty

riving costs is captured in the duration of these trips. The trip du-

ation between forest sites and wood mills ranges from 1 to 6 h in

he 6 case studies. The loading and unloading times ( t LU ) depend

n the used equipment and the nature of the wood products. They

re estimated at 20 or 30 min for these case studies. Therefore,

e use 20 or 30 min steps to discretize the planning horizon. The

 case studies are weekly LTSPs, but we solve the model (6) –(16)

nly for the current day of the disruption. The size of the daily

roblem varies depending on the nature and the occurrence time

f the disruption. The last two columns of Table 2 represent the

verage number of variables ( Var ) and constraints ( Constr ) of the

aily models that we solve for each case. 

To assess our approach, we performed complete information

ests on the case studies and compared the results to our real-

ime re-optimization approach. We refer to complete information

ests as settings where we assume we know all the unforeseen

vents in advance and we run the optimization method on the case

tudies taking into account these disruptions. In contrast, as we

rogress through the planning horizon and each time an unfore-

een event is revealed, our real-time re-optimization approach pro-

uces a new transportation plan for the current day. This plan is

sed until the next disruption. Although the complete information

etting is expected to outperform our approach because it takes

nto account all the disruptions in advance, we are nevertheless

ble to demonstrate the effectiveness of our real-time approach, as

e show next. 

.3. Experimental results 

We implemented the algorithms in C++, and used Gurobi 6.0

ith default settings to solve the mathematical programming

odel. All experimentation was done on an Intel Core i7, 2.2 GHz

rocessor with 16 GB of memory. We used the disruptions gener-

tor to derive several “weeks” of unforeseen events. We used two

opies of each week and sorted the weeks according to two cri-

eria: the total duration of all disruptions of a week for the first

opy and the average occurrence time for the second one. We then

icked the 10th, 50th, 75th and 90th percentiles of these weeks.

he lowest percentile, for instance, consists of a week with events

aving the lowest impacts among the generated weeks (close to

he 10th percentile of disruption duration) and happening at the

eginning of the day (close to the 10th percentile of occurrence

ime). In contrast, the highest percentile means that the events

ave hard impacts and occur close to the end of the days. We also
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Table 2 

Description of case studies. 

Case | M | | F | | P | D | V | | V u | | c D | | c W | | t LU | Var Constr 

C1 5 6 3 618 26 11 90 75 30 717 251 

C2 5 6 3 400 13 8 90 75 30 628 238 

C3 1 5 1 200 37 7 110 100 20 480 169 

C4 1 5 1 215 10 8 90 75 20 373 142 

C5 1 5 1 215 8 8 90 75 20 351 140 

C6 4 59 12 273 40 11 90 60 20 5686 2002 
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ombined weeks with hard impacts (75th and 90th percentiles of

isruption duration) and early occurrences (10th percentile of oc-

urrence time), and vice-versa (10th and 50th percentiles of dis-

uption duration with 90th percentile of occurrence time). Note

hat a different set of weeks is generated for each case study. The

rst part of Table 3 describes 8 weeks ( W ) that we picked for each

ase study. For each week, we provide the number of additional

emand ( DM ) in full truckloads, the number of loader breakdowns

 LO ), the number of closures ( CL ) and the number of delays ( DL ).

e do not generate additional supply since the latter is up to three

imes larger than the demand. This kind of events will not have a

onsiderable impact on the solution. Some weeks may have the

ame number of disruptions but their occurrence times are differ-

nt, which explains the differences in performance. 

For each of these weeks, we first transform the weekly time-

pace network according to the generated events. Note that we

imit the duration of an unforeseen event to the current day, to

ave a fair comparison with the real-time approach. We then solve

he problem for the whole week. This is the complete information

est. The second part of Table 3 compares the results of complete

nformation tests to the initial transportation plan without any dis-

uption. All the instances were solved to optimality. We first report

he number of additional trucks ( AT ) used in the optimal solution

ompared to the initial transportation plan. The usage of an ad-

itional truck implies a fixed cost so the model tries to minimize

he number of used trucks. This allows to use the under-utilized

rucks rather than using additional trucks. However, the model pri-

ritizes the demand satisfaction since a higher penalty is incurred

n the event of default. We report the unmet demand ( UD ) un-

er these disruptions. In fact, in some cases, even if the disrup-

ions are known in advance, nothing can be done to satisfy all the

emand within the planning time. This includes, for example, the

ase where a product is available at only a set of forest sites that

re closed by an unforeseen event or the case where the unloading

quipment at a mill is broken for a long time. The results for case

tudy C 6 show an example of this behaviour. 

The third part of Table 3 compares the results of the proposed

eal-time approach, where the model is solved every time an un-

oreseen event is revealed, to the initial transportation plan. The

odel is solved for a planning horizon starting at the event occur-

ence time and ending at the current day end. For case studies C 1

hrough C 5, an optimal solution was found within 1 minute. Case

 6 is larger and was solved to optimality within 10 s to 5 min

epending on the nature of the events. We report the number

f additional trucks used by our approach compared to the ini-

ial transportation plan and the unmet demand. The fourth part

f Table 3 represents the deviation in transportation cost ( Co ) and

nmet demand ( De ) compared to the complete information test.

he unmet demand deviation is computed as the difference be-

ween the two approaches resulting unmet demand divided by the

otal demand. This includes both the initial demand and the new

equests revealed during the week. The deviation in transporta-

ion cost does not include both the fixed cost for using trucks and

he unmet demand penalty. The comparison is done only for rout-

ng costs. Negative values of cost deviation do not mean that the
eal-time approach does better than the complete information ap-

roach. It only means that the real-time model was unable to sat-

sfy as much demand as in the complete information setting. This

appens generally when the request of additional volumes is re-

ealed close to the end of the day. Knowing in advance this infor-

ation, the complete information approach manages to satisfy the

emand. In contrast, the real-time approach does not have enough

ime to satisfy this late revealed demand. 

Although the complete information benefits from an informa-

ion advantage, the real-time approach offers the same perfor-

ance in about 50% of the cases. Only, one must note that in some

ases, even though the unmet demand and cost deviation are equal

or both approaches, the number of used trucks might be unequal.

f a truck undergoes a breakdown or a lot of delay, the first ap-

roach, knowing this information in advance, picks another truck

nstead beforehand. In contrast, the real-time approach uses this

ruck until these events are revealed and decides then to add an

dditional truck as a replacement. The routes produced by the two

pproaches are the same, but they are not operated by the same

rucks. 

The case study C 5 is the same as C 4 under the same disrup-

ions scenarios. The only difference is that no additional truck is

llowed in C 5. The results show that the real-time approach yields

n average difference between the two cases of 0.81% for the un-

et demand and -0.89% for transportation cost. Since the main

oal is to satisfy the demand, adding a truck is the best option for

his context. Also, for these two case studies, one may notice that

he deviations in costs are approximately proportional to the un-

et demand deviations. This is due to the configuration of these

ase studies. In fact, we have one product and one mill and the

istances between the forest sites and the mill are approximately

imilar. Therefore, the cost of transportation is approximately pro-

ortional to the number of demand that is satisfied. 

Compared to the complete information scenario, the proposed

eal-time approach produces good quality solutions since the cost

eviation remains under 3.64% and the demand deviation is un-

er 3.42%. This includes three extreme cases: C 3, C 4 and C 5 un-

er week 8. In these cases, there were late requests for new wood

oads. Around 5% of the total initial demand was added close to

he end of the day. This naturally explains the performance differ-

nce between the two approaches. In the real-time approach, some

emand is revealed too late that it is impossible to satisfy it, while

e assume that we are aware of this demand in the beginning of

he week in the complete information approach. Another extreme

ase is C 6. The results for C 6 show an example where difficulties

re met to satisfy the demand even for the complete information

etting. We recall that some events prevent the demand satisfac-

ion. For example, the demand cannot be satisfied if a loader at a

ill is broken for a long period on a certain day. With an equal

erformance with regards to demand satisfaction, the complete in-

ormation approach outperforms our approach by 0.06 and 0.75%

n two of the eight generated weeks for this case, while it pro-

uces the same results for the 6 remaining weeks. This shows that

he proposed approach results deviate slightly from the ideal set-

ing where all the information about the disruptions is known in
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Table 3 

Results on case studies. 

Disruptions Complete information Real-time Deviation 

W DM LO CL DL AT UD AT UD Co De 

C1 

1 5 3 2 13 0 0 .48% 1 0 .48% 0 .00% 0 .00% 

2 20 6 6 17 0 1 .72% 0 1 .72% 0 .00% 0 .00% 

3 22 7 7 20 0 2 .03% 0 2 .19% −0 .15% 0 .16% 

4 31 9 7 23 0 0 .92% 1 2 .47% −1 .06% 1 .54% 

5 6 3 3 13 0 0 .00% 0 0 .00% 0 .00% 0 .00% 

6 21 6 3 17 1 0 .47% 1 0 .47% 0 .25% 0 .00% 

7 14 7 5 20 0 1 .58% 0 1 .58% 0 .00% 0 .00% 

8 26 9 9 23 0 1 .86% 1 2 .48% −0 .33% 0 .62% 

C2 

1 5 1 1 10 0 0 .74% 0 0 .74% 0 .00% 0 .00% 

2 12 5 3 15 0 2 .18% 0 2 .18% 0 .00% 0 .00% 

3 19 5 4 15 0 2 .39% 1 2 .63% 0 .20% 0 .24% 

4 15 8 6 18 0 0 .00% 1 0 .00% 0 .00% 0 .00% 

5 7 2 2 10 0 0 .00% 0 0 .25% −0 .27% 0 .25% 

6 10 4 4 15 0 0 .00% 0 0 .00% 0 .13% 0 .00% 

7 14 6 4 19 0 0 .48% 0 0 .48% 0 .00% 0 .00% 

8 19 8 7 20 0 0 .95% 1 1 .19% 0 .13% 0 .24% 

C3 

1 7 2 1 8 1 0 .00% 2 0 .00% 1 .05% 0 .00% 

2 14 5 5 13 0 0 .00% 1 0 .00% 0 .52% 0 .00% 

3 17 6 5 16 1 0 .00% 3 0 .92% −0 .40% 0 .92% 

4 19 8 6 19 2 0 .00% 2 0 .00% 0 .49% 0 .00% 

5 9 2 2 9 3 0 .00% 4 0 .96% −1 .93% 0 .96% 

6 11 5 6 14 0 0 .00% 1 0 .00% 0 .00% 0 .00% 

7 17 5 6 16 1 0 .00% 2 0 .00% 0 .50% 0 .00% 

8 23 9 7 20 2 0 .00% 8 2 .69% −3 .08% 2 .69% 

C4 

1 7 2 2 10 0 0 .00% 1 0 .00% 0 .00% 0 .00% 

2 14 5 5 15 0 0 .00% 1 1 .75% −1 .86% 1 .75% 

3 24 6 6 17 0 0 .00% 2 1 .67% −1 .74% 1 .67% 

4 19 8 7 20 0 0 .00% 1 0 .85% −0 .91% 0 .85% 

5 9 2 2 10 0 0 .00% 2 0 .00% 0 .00% 0 .00% 

6 11 5 5 15 0 0 .00% 2 0 .00% 0 .00% 0 .00% 

7 17 6 6 17 0 0 .00% 0 0 .00% 0 .00% 0 .00% 

8 19 8 7 20 0 0 .00% 1 2 .99% −3 .01% 2 .99% 

C5 

1 7 2 2 10 0 0 .00% 0 0 .00% 0 .00% 0 .00% 

2 14 5 5 15 0 0 .00% 0 2 .62% −2 .80% 2 .62% 

3 24 6 6 17 0 0 .00% 0 2 .51% −2 .63% 2 .51% 

4 19 8 7 20 0 0 .00% 0 2 .56% −2 .73% 2 .56% 

5 9 2 2 10 0 0 .00% 0 1 .34% −1 .43% 1 .34% 

6 11 5 5 15 0 0 .00% 0 0 .88% −0 .95% 0 .88% 

7 17 6 6 17 0 0 .00% 0 0 .43% −0 .46% 0 .43% 

8 19 8 7 20 0 0 .00% 0 3 .42% −3 .64% 3 .42% 

C6 

1 5 2 2 8 0 0 .72% 0 0 .72% 0 .00% 0 .00% 

2 12 5 4 16 0 1 .05% 6 1 .05% 0 .74% 0 .00% 

3 19 7 4 17 0 4 .79% 0 4 .79% 0 .00% 0 .00% 

4 15 9 5 20 0 5 .21% 0 5 .21% 0 .00% 0 .00% 

5 7 2 1 10 0 2 .50% 0 2 .50% 0 .00% 0 .00% 

6 10 5 3 15 0 3 .53% 0 3 .53% 0 .00% 0 .00% 

7 14 8 6 18 0 4 .88% 0 4 .88% 0 .00% 0 .00% 

8 19 10 7 21 0 5 .14% 0 5 .14% 0 .06% 0 .00% 

DM number of additional demand in full truckloads LO number of loader breakdowns CL number 

of closures DL number of delays AT number of additional trucks UD proportion of unmet demand 

Co transportation cost De deviation in unmet demand. 
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advance, and therefore demonstrates effectiveness of the real-time

approach. 

5. Conclusion 

We have introduced a new approach to re-optimize the log-

truck transportation plans in real-time when an unforeseen event

is revealed. This approach uses a time-space network to repre-

sent the evolution of the transportation network over time and the

changes it undergoes following a disruption. The allowed trips and

loading/unloading operations are used as an input for the math-
matical model. The latter is solved to obtain a new transporta-

ion plan. Ease of deployment of this new plan is taken into ac-

ount through ensuring the continuity of trips that are in progress

hen the disruption is revealed unless they are directly impacted

y the disruption. A simulation procedure was developed to gener-

te the unforeseen events for real applications provided by FPInno-

ations. Compared to a complete information scenario where dis-

uptions are assumed to be known in advance, the proposed ap-

roach produces very good results. Also, the mathematical model

as solved in a few seconds and is thus well suited for a real-time

ontext. 
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Future work involves using a heterogeneous fleet of trucks. The

resence of trucks with a loader onboard may give more recourse

trategies especially when facing loader breakdowns at forest sites

r mills. The approach proposed in this paper could be adapted to

his context. The time-space network could be used to represent

he disruptions impacts on the forest supply chain. However, since

he trucks may have different capacities and loading constraints,

ne must duplicate the arcs for each truck class. This will increase

he size of the problem. In this context, column generation could

e used for solving this problem. 

In the problem that we study, a part of the input is revealed

ynamically and the routes are modified accordingly. The dynamic

nput corresponds to the unforeseen events and the transportation

lan is re-optimized every time a disruption happens. One draw-

ack of this approach is that it does not anticipate the disruptions.

 stochastic model would be able to produce solutions that are less

ulnerable to disruptions. Unfortunately, there exists no study on

he probability distributions of such events in the forest industry.

onducting such a study is challenging given that it is hard to get

istorical data. This is, however, an avenue for future research since

any forest companies are investing in log-trucks with onboard

omputers, positioning systems, and communication technologies

hat can be used to collect accurate data on disruptions. 
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